
Validating & Cleaning Data 
 

This exercise focuses on using tools to validate, clean explore data sets.  

Introduction 
A big problem with publicly available datasets is the number of errors within them. These problems vary 
from simple spelling errors, to the more complex problems involving misuse of units. This exercise is 
going to evaluate the following problems and related solutions: 

 

1. Date Validation 
One of the most common problems in data is mixed date formats, this can be particularly 
troublesome when you have British and American date formats e.g. (7/12/2012 and 12/31/2012). 

 
2. Multiple Representations 

Most common in datasets containing abbreviations, for example in location data or role based 
data. It is common that abbreviations will change and even be present in fully expanded form (e.g 
Vice-President Marketing and VP Marketing)  

 
3. Summation Records 

When data has been extracted from a spreadsheet application, it is common to be left with both 
columns and rows of data containing the sums (or other formula) of the other data. While not an 
error, it is inconvenient when you want to re-process the data.  

 
4. Duplicate Record Detection 

Duplicated records are common place both at the point of entry (by a human) but also a common 
occurrence when exporting a huge amount of data from multiple systems. It is often the case that 
the data has been duplicated in order to speed up searching across multiple domains where the 
data is applicable in both.  

 
5. Mixed use of numerical scales 

A common, but critical, failure in data that can lead to audit failure. Outliers are often clear to see 
as one record may contain a figure multiple factors bigger than any other.  

 
6. Redundant Data 

Redundant data is not required, thus it is common that errors are made when entering it. 
 

7. Numeric Ranges 
Numeric ranges, often used to anonymise data, cause problems when wanting to explore and 
visualise the data.  

 
8. Spelling Errors 

Last but not least, while not critical in all cases, spelling errors can lead to awkwardness when 
querying and visualising data (not included in this exercise as refine is not great for this, use excel 
instead). 



 

Download data 
In order to carry out this exercise three datasets are required. Although the datasets are genuine, they 
have all been modified for this exercise. The modified datasets are available from the course website.  

Download each of the datasets onto your laptop for later use. Do not open them in any application 
including excel, this may result in you changing the dataset if it is re-saved.  

Dataset 1 – Louisiana Secretary of State Officials  
Download: http://training.theodi.org/resources/dataset1.xls   

This dataset lists the statewide and multi-parish elected officials, all elected officials in a parish, and all 
elected officials in an office e.g. all sheriffs in the state of Louisiana.  

The original dataset is available at: http://www.sos.la.gov/tabid/136/Default.aspx (removed as of 
1/7/2013) 

Dataset 2 – Projects Dataset  
Download: http://training.theodi.org/resources/dataset2.csv  

This dataset lists project data available from the US Governments IT Dashboard system at 
http://www.itdashboard.gov/data_feeds. It covers the projected and actual costs and timings of a number 
of government funded projects in the US.  

Dataset 3 – UK GP Earnings  
Download: http://training.theodi.org/resources/dataset3.csv  

This dataset lists earnings data for medical doctors in the UK from 2009. The original dataset is available 
from http://data.gov.uk/dataset/gp-earnings-and-expenses-2009-10  
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Importing into Google/Open Refine 
In order to process the data requires the Google Refine (soon to be Open Refine) tool available from 
openrefine.org.  

Refine is an application that runs on your local machine, meaning that you don’t have to upload a large 
dataset to a web service. Additionally this has the benefit that the data remains private.   

Once installed and running it should open a browser window on the refine home screen. 

 

 

From the home screen, create a new project by choosing a downloaded dataset on your machine. 

 

The following screen is the import screen and shows you a preview of what Refine thinks the dataset 
should look like. Check the titles and columns look correct before clicking create project. If the import 
options look wrong you can adjust them using the panel at the bottom on the screen. 

 



1. Date Validation (Dataset 1) 

One of the most common problems in datasets is that of mixed date formats. Sometimes the mix is 
simple to spot, e.g. 8-Sep-2013 vs 8/9/2013, sometimes not, e.g. 8/9/2013 vs 9/8/2013. 

Due to this problem, the majority to tools, including refine, will simply import the data as a string object 
and not worry about the format or content of the object. In the case of refine a string object is known as a 
text object and can be browsed using a text facet. 

In the dataset we are looking at in this exercise we are going to 
look at the range of dates in the commissioned date column.  

To apply a text facet, click the downward arrow next to the 
column title and select text facet.  

Doing this will bring up a facet 
browser that you can use to 
view all the data in this column 
groups together. A quick scroll 
through this panel will reveal 
that we are in an American 
date format, with month first. 

There is one invalid date affecting 17 records.  

To change this value, we could hover over the value and click the edit 
link, however we are going to look at a different method using a cell 
transform.  

A cell transform allows us to change the type of the object. In this case 
from text to a date object.  

 

To do this select the to date option from the column transforms menu as shown.  

 

 

 



 

Once done you will see that the text facet we applied previously is now full of random values that make 
no sense. This is because we cannot apply a text facet to an object that is not actually text anyone. At 
this point remove the text fact by clicking the close button in the top left corner of the facet browser. 

 

In translating our text to a date object, refine has parsed over all the values in the date column and 
attempted to match the most common date format and used this as the basis to correct errors. In this 
case it would have recognised that the UK date format was being used and automatically corrected our 
17 records from before. As this is such a common error, libraries for recognizing date formats are 
commonplace and used a lot on the web as well as other platforms.   

In order to explore our new date objects we can apply a timeline facet. To do this click the downward 
arrow next to the column title and select timeline facet from the facet sub menu. The facet that appears 
will now display the range of dates and the number of items as a graph. 

 

 

 

You probably want to untick the blank box while browsing the data in this way so that the facet is only 
displaying records that have a date associated with them. Note that if any of the rows had failed in the 
date translation they would appear as errors in this facet and would required manual investigation to 
clean.  

 

 

 

  

   



2. Multiple Representations (Dataset 1) 
Due to the unique ways that people like to save time in data entry by abbreviating everything,  
it is very common to end up with several different representations of the same thing.  

Thankfully the advanced clustering features of Refine can help us out.  

In this example we are going to use our Louisiana dataset and 
apply a text facet to the Office Title column. This can be done 
from the drop down menu available from the Office Title column. 

In doing this we can immediately see many errors in the data. The 
errors highlighted all seem to involve trailing spaces and we can 
correct this in two ways. Firstly we can directly edit each value by 
hand, by hovering over it and clicking the edit button. Try this 
with the Assessor values, upon saving your edit you should see 
them group together showing 64 records.  

Perhaps a more useful way however is to use a trim spaces 
transform on the Office Title column to clean them all in one go.  

 

While this has eliminated many of the errors, others still remain, such as “Council Member” and 
“CouncilMember”. To fix these errors we can use the clustering techniques available in Refine. To access 
these press the cluster button from the facet browser.  

 

At the top of the clustering screen you can pick from many scientific methods and keying functions which 
all cluster data in slightly different ways. The method that will work best will very much depend upon your 
dataset and thus it is worth browser through each method and function to find which one best suits your 
needs.  

It may be necessary to use a combination of methods and functions, each time selecting a number of 
records you want to merge, entering the new value and then pressing merge selected and re-cluster.  



3. Duplicate Record Detection (Dataset 1)  

In order to identify duplicate rows we are going to look at the data in 
the Candidate Name column. Once again we are going to use the 
clustering function, but this time we need to examine the data more 
closely.  

To bring up the clustering panel, select cluster and edit from the edit 
cells menu from the dropdown of the Canditate Name column. 

As in the multiple representations section, it is recommended that you 
look at the multiple functions to find that which best shows likely 
duplicate records.  

Unlike in the previous exercises we do not want to change values, we want to remove duplicates. To do 
this we first need to confirm that the data is duplicated. To discover this, hover your pointer over a cluster 
and then select the Browse this Cluster option.  

 

Using the new window that pops up, we can then browse just that cluster and star any duplicated data 
that we wish to later remove. Once done, close the window or tab to return to the original dataset.  

 

 

Do this for a number of duplicated records before closing the 
clustering screen.  

To view all the rows you stared apply a star facet to the All column, 
select the true values and then delete them by selecting Remove all 
matching rows from the edit rows menu. If you cannot see any 
stared rows, ensure that you don’t have any facets currently applied. 



4. Summation Records (Dataset 2) 

It is often the case that data exported from a spreadsheet application will contain summation rows and 
columns. While the columns are easier to spot, the rows are much harder in a large dataset.  

A little tip is to browse right to the end of the dataset in order to see what the very last record is. This can 
be done in Refine by clicking the last button and scrolling to the bottom of the dataset on the last page of 
data. 

 

Let’s start by staring the “Total” row for later removal. Now we know that they exist, we should check to 
see if there are any more rows and try to find what they represent.   

Apply a text facet using 
the drop down next to the 
Unique Investment 
column.   

Scroll to the bottom of the 
facet and select all “Total” rows and star these. Staring rows is 
done from the dropdown menu of the All column and is available 
under edit rows.  

While we are in the facet also note the row numbers where the 
total exists. As there are many of them, we might conclude that this one dataset is an export of many 
worksheets. Clearing the facet and browsing to one of the recorded row numbers allows us to gain an 
idea about how the data was represented in the various worksheets. 

 

From the data displayed it looks like the totals are per agency. When 
happy that the summations are understood, delete the total rows such 
that they don’t spoil the later processing. To do this apply a Facet by 
star from the All column, select true in the facet. Finally from the All 
dropdown select remove all matching rows from the edit rows menu.  



5. Mixed use of numerical scales (Dataset 2) 
With the projects dataset being all about costing and budgets, we should probably take a look at the 
numerical data in these columns to see if there is consistent usage of units.  

Applying a numerical facet to the Lifecycle Cost column is useful 
in some ways, but doesn’t truly represent the distribution of values 
from a norm.  

NOTE: Some versions of refine won’t recognise the “Lifecycle 
cost” column as a number (shown in Green), but as Text (shown in 
Black). Thus a numeric facet won’t yet work. To fix this select the 
drop down on the Lifecycle cost column, and from the edit cells 
menu, select common transforms and then to number.  

Once you have a numeric facet, it shows the distribution of data as a power curve (lots of low value 
projects and a long tail of fewer high value ones). In order to distribute the values more evenly, click the 
change button. From the box that appears we can apply filters and programmatic changes to the values 
in the columns.  

 

In order to more clearly display the distribution of our 
values we are going to change the values so we can 
view them on a log scale. This can be done by adding 
.log() to the end of our value. 

 

 

Using this distribution we can now see a normal distribution of values. 
Further we can much more easily analyse those extreme values at 
each end of the scale. In order to examine the extremes, drag the two 
controls in from either side as appropriate to filter the data.  

 

By looking at this data, as well as the column titles of other columns, it should be relatively clear that the 
units of this column are probably $M. There are many low cost projects, however there is also one 14 
month project with a huge cost. 

 

 

 

Looking at the different between lifecycle cost and planned cost should reveal the extent of the problem 
and allow it to be fixed. Imagine the knock on effect this had with the totals!  
 

N.B. While the totals rows were added to the data for the purposes of this exercise. The mistaken project 
cost of 117098 million existed in the original dataset!  



6. Redundant Data (Dataset 2) 

 During the summation records exercise it was discovered that the data appears to be grouped by 
Agency. 

 

Looking at this data again, it should also be clear to see that we have an Agency Code and Agency Name 
columns. While it shouldn’t matter that we have both pieces of data, redundant data can also lead to 
errors. Beneficially, redundant data can often be easier to fix; the more data you have, the clearer the fix 
is likely to be.  

In this exercise we are going to check that the agency codes always match the name. In order to do this 
we are going to amalgamate the data in a single column and then apply a text facet.  

 

From the Agency Name column select add column based on 
this column from the edit column menu. 

This will pop up an expression editing box similar to the one 
we used in the numerical scales exercise. The default 
expression simply copies the data from this column to a new 
one. We are going to change this to copy the data from two 
columns into a new Combined Data column. Name the new 

column and then replicate the value shown in the red box below. 

 

 

Once done, try applying a text facet to the new column to find and correct any errors that exist in the 
dataset.  

As an interesting experiment, you could also choose to bring back the total columns (this can only be 
done via undo/redo and then recreating the column) and see if the totals correlated to one or more of 
your fixes.  



7. Numerical Ranges – Dataset 3 (Advanced) 
In anonymised data it is very common to split numerical data into ranges. However this can make 
processing and visualising the data a much bigger challenge. In the example below we can see both age 
range data (e.g. 25-30) and salary data (e.g. >25k).  

 

By applying a text facet to Gender and at the same time a numeric facet to Average Gross Earnings 
from Employment, you should be able to see that (in this dataset), men are earning more than women. 
Note also the character encoding error on the column titles, meaning the column titles give no indication 
of units. 

In order to explore this further it would also be good to apply a numeric facet to Age Band and Average 
Gross Earnings from Self Employment, however the data in these columns it not numeric. We could try 
using the to number function under common transforms, however this does not work on this data so 
some other method needs to be applied. In this example we use the expression editor and the jython 
language to do some processing on the values.  

To bring up the expression 
editor, choose custom 
numeric facet from the Age 
Group column. 

In both this and the next 
example, the choice has been 
made to remove the ranges 
and simply change these into 
numeric values that represent 
the mid point (as a whole 
number). 

To process the salary data is a 
little more complicated as we 
have lots of variations that need to be dealt with. Below is a piece of sample code to process the salary 
data. 

 

value = value.replace('k','000'); 
 
if value[:1] == ">": 
   value = value[1:]; 
if value[:1] == "<": 
   value = value[1:]; 
if value[:1] == "=": 
   value = value[1:]; 
 
bits = value.split("<"); 
if len(bits) < 2: 
      return int(value); 
 
diff = int(bits[1]) - int(bits[0]); 
diff = diff / 2; 
value = int(bits[0]) + diff; 
return int(value); 


